
Analyzing Natural-Language Requirements:

The Not-too-sexy and Yet Curiously Difficult
Research that Industry Needs

Lionel Briand

REFSQ, Feb 28th, 2017

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

SVV Lab Overview

2

• Established in 2012, part of the SnT centre

• Requirements Engineering, Security Analysis, Design
Verification, Automated Testing, Runtime Monitoring

• ~ 25 lab members

• Eight partnerships

• Budget 2016: ~2 Meuros

Mode of Collaboration

3

• Basic and applied research driven by industry needs
• High-impact research
• Develop and evaluate innovative solutions in context

Objectives of the Talk

4

• Most requirements are stated in some form of
natural language, with varying degrees of
structure

• What are the challenges?
• How can we exploit such requirements?
• What form of automated support can be

provided?
• Objective: Report on experience performing

collaborative research with industrial partners

Natural Language Requirements

5

• Fuzzy
• Hard to analyze
• Not mathematical

But …
• Easier to write and read
• Usable by most engineers, in most contexts
• Commonplace

Natural Language Processing

6

• Automated techniques to fruitfully process natural
language corpora: Part-of-Speech (PoS) tagging,
grammar-based parsing, lexical semantic analysis …

• Many applications: translation, NL understanding,
sentiment analysis, text classification, …

• First applications in translating Russian to English
(1950s).

“The spirit is willing but the flesh is weak” =>
Russian => “The vodka is good but the meat is
rotten”

Natural Language Processing

7

• Huge progress has been made
• Requirements engineering can greatly benefit

from it too
• NLP has a long history in RE research
• Traceability, transformation, ambiguity detection

…
• Limited use in RE practice and much room for

improvement
• Commercial and OS requirements management

tools provide no or limited NLP analysis

8

Industrial Challenges

Compliance with Templates

9

• Templates and guidelines address ambiguity
and incompleteness in NL requirements

• Large number of requirements
• People tend not to comply with templates and

guidelines, unless they are checked and
enforced

• Scalable and accurate automation is needed

Domain Knowledge

10

• All requirements depend, more or less
explicitly, on domain knowledge

• Domain-specific concepts and terminology
• Not always consistent among all stakeholders
• Software engineers often have a superficial

understanding of the application domain they
target

• Capturing domain knowledge: Glossary,
domain model

Traceability

11

• In many domains various types of traceability
are required

• For example, in automotive (ISO 26262),
traceability between requirements and system
tests: requirements-driven testing

• Many requirements, many tests, therefore
many traces …

• Automation is required

Change

12

• Requirements change frequently
• Changes have side-effects on other

requirements, design decisions, test cases …
• How do we support such changes in ways

that scale to hundreds of requirements or
more?

• Automated impact analysis

Configuring Requirements

13

• Many software systems are part of product
families targeting varying needs among multiple
customers

• Requirements typically need to be tailored or
configured for each customer

• Because of interdependencies among such
decisions, this is often error-prone and complex

• How do we support this with natural language
requirements?

14

Addressing the Challenges

Representative Context

15

Challenges

16

• Large projects in satellite domain (e.g., ESA)
• Hundreds of natural language requirements
• Three tiers of requirements
• Many stakeholders
• Requirements capture a contract
• Requirements frequently change

17

Checking Compliance with
Templates

Rupp’s Template

18

<Optional
Condition>

<System
Name>

SHALL

SHOULD

WILL

<process>

PROVIDE <whom>
WITH THE ABILITY TO

<process>

BE ABLE TO <process>

<object>
<additional

details about
the object>

As soon as the visual notification is presented
the SOT Operator shall launch the local S&T application as a
separate process. Glossary?

There must be something existing
RQA
DODT

There must be something existing
RQA (Glossary)
DODT (Ontology)

Story Behind

19

NL Requirements
Ambiguity prone

Contractual Basis

Requirements Templates
Mitigate ambiguity

Template Conformance?
Large number of requirements

Evolving requirements

Approach

20

• Text chunking: identifies sentence segments
(chunks) without performing expensive
analysis over the chunks’ internal structure,
roles, or relationships

• Templates: RUPP and EARS, expressed as BNF
grammars and then pattern matching rules

• Practical: No reliance on glossary, ontology …
• Scalable: Hundreds of requirements in a few

minutes

Text Chunking
Process of decomposing a sentence into non-overlapping
segments.

21

As soon as the visual notification is presented the SOT
Operator shall launch the local S&T application as a
separate process.

Adverbial Phrase (ADVP)

Noun Phrase (NP) Verb Phrase (VP)

Prepositional Phrase (PP)

Subordinate Clause (SBAR)

Template Conformance Checking

22

As soon as the visual notification is presented
the SOT Operator shall launch the local S&T application
as a separate process.

Mark
Head

Mark
Modal VP

Mark
Anchor

Mark
Condition

Mark Valid
Sentence

Mark Template
Conformance

Mark
Conformant

Segment

Mark
Details

Mark
Conditional

Details

CONFORMANT

Valid Sentence

Evaluation

23

380 Requirements
380 Requirements 110 Requirements 890 Requirements

Results

• Absence of glossary has no significant impact on
the accuracy of template conformance checking

• Avg. Recall - 94.3%

• Avg. Precision - 91.6%

24

Tool: RETA

25

GATE NLP
Workbench

Conformance
Diagnostics

(within GATE)Requirements

Lists of modals,
conditional words,

ambiguous terms, etc.

LSTLSTLSTLST
Rules for checking

template
conformance

JAPEJAPEJAPEJAPE
Rules for checking

best practices

Glossary
(optional)

JAPEJAPEJAPEJAPE

Requirements Analyst

Requirements Authoring &
Management

http://sites.google.com/site/retanlp/

26

Change Impact Analysis

Inter-Requirements

27

Inter-Requirements
Change Impact Analysis

Story Behind

28

How do you manage all the changes?• Large number of requirements
• So many stakeholders
• Consistency needs to be maintained

(Contractual basis)

MANUALLY

Approach

29

• A change in requirements may lead to
changes in other requirements

• Hundreds of requirements
• No traceability
• We propose an approach based on: (1) Natural

Language Processing, (2) Phrase syntactic
and semantic similarity measures

• Results: We can accurately pinpoint which
requirements should be inspected for
potential changes

Example

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

30

Change

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

31

Challenge #1
Capture Changes Precisely

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

32

Challenge #2
Capture Change Rationale

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

33

• R1: The mission operation controller shall transmit satellite status reports to the user help desk
document repository.

• R2: The satellite management system shall provide users with the ability to transfer
maintenance and service plans to the user help desk.

• R3: The mission operation controller shall transmit any detected anomalies with the user help
desk.

Challenge #2
Change Rationale

Possible Rationales:

1: We want to globally rename “user help desk”
2: Avoid communication between “mission
operation controller” and “user help desk”
3: We no longer want to “transmit satellite status
reports” to “user help desk” but instead to “user
document repository”

34

Solution Characteristics

• Account for the phrasal structure of requirements
The mission operation controller shall transmit satellite

status reports to the user help desk document repository.
user help desk, Deleted

user document repository, Added

• Consider semantically-related phrases that are not exact
matches and close syntactic variations across requirements

35

Narcia

https://sites.google.com/site/svvnarcia/

Narcia in Action

37

Evaluation

38

158 Requirements
9 change scenrios

72 Requirements
5 Change
Scenarios

“touristic attraction”
is a

“point of interest”
Reason:

Lack of a Domain Model

1 impacted requirement missed
out of a total of 106 impacted

requirements.

Effectiveness of Our Approach

39

Fu
til

e
In

sp
ec

tio
n

Ef
fo

rt

1% - 7% 6% - 8%

45%

Requirements to Design

40

Requirements-to-Design
Change Impact Analysis

Motivations

• Rigorous change management required by many standards
and customers in safety critical systems, and embedded
systems in general in many industry sectors

• Impact of requirements changes on design decisions

• Complete and precise design impact set

• SysML commonly used as system design representation

41

Requirements Diagram

42

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temp detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Behavioural Diagram

Compute Impacted Elements

45

Structural
Analysis

Behavioural
Analysis

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Change to R11: Change over temperature detection level to 147 C
from 110 C.

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temp detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Behavioural Diagram

Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temp detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Behavioural Diagram

input
from B2

output
to B5

output
to B4

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Structural Diagram

Rank Elements

52

Natural
Language

Processing
Analysis

Change to R11: Change
over temperature detection
level to 147 C from 110 C.

B2, B3, B4, B6

B2
B6
B3
B4

Ranked
according to
likelihood of

impact

Change Statements

• Informal inputs from systems engineers regarding impact of
changes

• Example: “Temperature lookup tables and voltage converters
need to be adjusted”

53

Natural Language Processing

• Computing similarity scores for model elements by applying
NLP techniques to measure similarity between model
elements labels and change statements.

• Sorting the design elements obtained after structural and
behavioral analysis based on the similarity scores

• Engineers inspect the sorted lists to identify impacted
elements

54

Identifying a Subset to Inspect

• Pick the last significant peak in delta similarity between two
successive elements

D
el

ta

r = 49%

% of elements inspected in the sorted list

0 25 50 75 100

0.0

0.1

0.2

0.0

0.8

0.6

0.4

0.2

S
im

ila
ri

ty
 s

co
re

�

h = 0.26max

h = 0.026max/10
h last

Figure 13: Ranked similarity scores and delta chart
for an example change scenario from CP. The delta
chart is used for computing the cuto↵ (r).

and i�1. For easier understanding, in Figure 13, we further
show the ranked similarity scores on the top of the delta
chart. These similarity scores were computed using Soft-
TFIDF (syntactic measure) and JCN (semantic measure).
As described in Section 2.3, the label of each EIS element
e is compared against all keyphrases in the change state-
ment using both SoftTFIDF and JCN. The maximum value
obtained from all these comparisons is assigned to e as its
similarity score. The chart on the top of Figure 13 plots the
EIS elements in descending order of the similarity scores.

For the cuto↵, we pick the point on the X-axis after which
there are no significant peaks in the delta chart. Intuitively,
the cuto↵ is the point beyond which the similarity scores can
no longer adequately tell apart the elements in terms of be-
ing impacted. What is a significant peak is relative. Based
on our experiments, a peak is significant if it is larger than
one-tenth of the highest peak in the delta chart, denoted
h
max

in Figure 13. The only exception is the peak caused
by zeroing out similarity scores smaller than 0.05 (see Sec-
tion 2.3). This peak, if it exists, is always the last one and
hence denoted h

last

. Since h
last

is artificial in the sense that
it is caused by zeroing out negligible similarity values, we
ignore h

last

when deciding about the cuto↵.
More precisely, we define the cuto↵ r to be at the end of

the right slope of the last significant peak (excluding h
last

).
In the example of Figure 13, h

max

= 0.26. Hence, r is at
the end of the last peak with a height > h

max

/10 = 0.026.
We recommend that engineers should inspect the EIS ele-
ments up to the cuto↵ and no further. In the example of
Figure 13, the cuto↵ is at 49% of the ranked list. We note
that the cuto↵ can be computed automatically and with-
out user involvement. Therefore, the delta charts and their
interpretation are transparent to the users of our approach.
In summary, for each change scenario, we automatically

recommend, through the analysis of the corresponding delta
chart as explained above, the fraction of the ranked EIS
that the engineers should manually inspect for identifying
actually-impacted elements.
RQ4. (E↵ectiveness) To answer RQ4, we report the re-
sults of applying the best similarity measure alternatives
from RQ2 for ranking the EISs computed by the algorithm of
Figure 8 (i.e., combined structural and behavioral analysis),
and then considering only the ranked EIS fractions recom-
mended by the guidelines of RQ3. Note that in this RQ, by
EIS we mean the fraction obtained after applying the guide-
lines of RQ3. In Figure 14, we show for our 16 changes the
size and precision distributions of the recommended EISs.
These distributions are provided separately for the best simi-
larity alternatives from RQ2, i.e., SoftTFIDF combined with

●

●

●

RES.SoftTFIDF JCN.SoftTFIDF

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

After NLP

Similarity Measure Combincations

Pr
ec

is
io

n(
%

)

●

●

●

●

RES.SoftTFIDF JCN.SoftTFIDF

0
10

20
30

40
50

60

After NLP

Similarity Measure Combincations

EI
S

Si
ze

 (#
)

(b) Precision

Pr
ec

is
io

n
(%

)
0

10
20

30
40

50

(a) Size

EI
S

Si
ze

 (#
)

0
10

20
30

40
50

Soft.RES

60
7060

Soft.JCN Soft.RES Soft.JCN

Figure 14: Size and precision of EISs that result
from the application of the guidelines of RQ3 to the
EISs computed by the algorithm of Figure 8.

RES (denoted Soft.RES) and SoftTFIDF combined with
JCN (denoted Soft.JCN).
The average EIS size is 30.2 for Soft.RES and 18.5 for

Soft.JCN. The average precision for Soft.RES and Soft.JCN
are 19.5% and 29.4% respectively. As for recall, Soft.RES
yields a recall of 100% for all 16 changes, while Soft.JCN
misses one element for one change. That is, using Soft.JCN,
we have a recall of 100% for 15 changes, and a recall of 85%
for one change (i.e., an average recall of 99%). The results
clearly show that Soft.JCN yields better overall accuracy.
In summary, after applying our best NLP-based similarity

measure, Soft.JCN, the average precision of our analysis in-
creases to 29.4% compared to 16% obtained by the combined
behavioral and structural analysis (discussed in RQ1). The
average recall reduces to 99% compared to 100% obtained
by the combined analysis. Finally, using NLP, the average
number of elements to be inspected by the engineers reduces
to 18.5 (just 4.8% of the entire design model) compared to
38 (9.7% of the design model) before applying NLP.
RQ5. (Execution Time) The execution time for both
steps of our approach, i.e., computing the EISs and ranking
the EISs, was in the order of seconds for the 16 changes.
Given the small execution times, we expect our approach to
scale to larger systems. Execution times were measured on
a laptop with a 2.3 GHz CPU and 8GB of memory.

Validity considerations and threats. Internal and ex-
ternal validity are the most relevant dimensions of validity
for our case study. With regard to internal validity, an im-
portant consideration is that the change statements must
represent the understanding of the engineers about a change
before the engineers have determined the impact of that
change; otherwise, the engineers may learn from the anal-
ysis they have performed and provide more precise change
statements than when they have not examined the design
yet. If this occurs, the accuracy results would not faithfully
represent what one can achieve in a non-evaluation setting.
In our case study, the change statements were pre-existing
and written at the time that the change requests had been
filed, i.e., before the impact of the changes had been exam-
ined. The engineers in our case study were therefore required
only to inspect the design and provide the actual impact sets
(gold standard). Consequently, learning is not a significant
threat to internal validity. A potential threat to internal va-
lidity is that one of the engineers involved in our case study
is a co-author. To minimize potential bias, the engineers
involved neither used our tool nor saw the results generated
by the tool until they had specified the actual impact sets.
With regard to external validity, while our case study is in-

Approach

56

Build SysML
Models

System
Requirements

Traceability
Information Model

Requirements and
Design Models

Estimated
Impact Set

Compute
Impacted
Elements

Requirements Changes and
Informal Change Statements

Phrases
Similarity

Matrix

Process
Change

Statements

Sort
Elements

Sorted
Elements

Evaluation

57

370 elements
16 change scenarios

Effectiveness of Our Approach
Fu

til
e

In
sp

ec
tio

n
Ef

fo
rt

(%
)

Structural

Effectiveness of Our Approach

Structural Behavioural

Fu
til

e
In

sp
ec

tio
n

Ef
fo

rt
(%

)

Effectiveness of Our Approach

Structural Behavioural NLP

1 impacted element missed out of
a total of 81 impacted elements.

Fu
til

e
In

sp
ec

tio
n

Ef
fo

rt
(%

)

61

Glossary Extraction and
Clustering

NL Requirements

• Usually multiple stakeholders, organizations …
• Inconsistent terminology

• Multiple terms for same concepts
• element / component / object

• Multiple representations of same keywords
• status of Ground Station Interface component
• Ground Station Interface component’s status
• Interface component status

62

Requirements Glossary

63

• Glossaries help mitigate ambiguities
• consistent terminology
• improves communication among

stakeholders

Story Behind

64

Let’s automatically identify the
glossary terms using text chunking.

Wait, I think we’ve used different variations
for the terms.

Let me fix these variations in the document.

Terms
Clustering

Approach

R1 - STS shall supply GSI monitoring information
(GSI input parameters and GSI output parameters) to the STS
subcontractor.

R2 - When GSI component’s status changes, STS shall update the
progress of development activities.

R1 - STS shall supply GSI monitoring information
(GSI input parameters and GSI output parameters) to the STS
subcontractor.

R2 - When GSI component’s status changes, STS shall update the
progress of development activities.

66

Identification of
Candidate Terms Similarity Calculation ClusteringIdentification of
Candidate Terms Similarity Calculation ClusteringIdentification of
Candidate Terms Similarity Calculation Clustering

• STS
• STS Subcontractor

• GSI
• GSI input parameter
• GSI output parameter

• GSI component
• GSI component’s status
• GSI monitoring information

• development activity
• progress of development activity

0.85

Identification of
Candidate Terms Similarity Calculation Clustering

Evaluation of Glossary Terms

67

380 Requirements
138 Requirements 110 Requirements

JATE

TextRank
TOPIA

TermRaider
TermoStat

Results

68

Our Approach

ΔRecall > 20% JATE

TextRank
TOPIA

TermRaider
TermoStat

JATE

TextRank
TOPIA

TermRaider
TermoStat

Results

69

Our Approach

Precision ~

Clustering Evaluation

70

20 clusters
each case study 27 clusters

• Interview Survey

How useful is our approach?

• I find this cluster helpful for identifying the related terms for a glossary term.

• 89.6% (strongly agreed / agreed)

• As the result of seeing this cluster, I can define a glossary term more precisely than I
originally had in mind.

• 88% (strongly agreed / agreed)

• I find this cluster helpful for identifying the variations (synonyms) of a glossary term.

• 61% (strongly agreed / agreed)

• 28% (not relevant)
71

72

Domain Model Extraction

Motivation

• Representation of important domain concepts and their relations

• Facilitate communication between stakeholders from different
backgrounds

• Help identify inconsistencies in terminology, etc.

• In practice, domain models are not preceding the elicitation and writing of
requirements

73

Domain Models
A domain model is a representation of conceptual entities or

real-world objects in a domain of interest.

74

Context

75

Requirements
Analysts

NL Requirements
Document

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

Build Domain
Model

Specify
Requirements

Problem Definition

• Manually building domain models is laborious

• Automated support is required for building domain models

76

State of the Art

• Multiple approaches exist for extracting domain models or
similar variants from requirements using extraction rules

• Majority assume specific structure, e.g., restricted NL

• Extraction of direct relations only but not indirect ones

• Limited empirical results on industrial requirements

76

Approach

78

Process
Requirements

Statements

Lift
Dependencies to
Semantic Units

Construct
Domain Model

NL
Requirements

Phrasal
Structure

Dependencies Phrase-level
Dependencies

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

Extraction
Rules

Approach

79

Process
Requirements

Statements

Lift
Dependencies to
Semantic Units

Construct
Domain Model

NL
Requirements

Phrasal
Structure

Dependencies Phrase-level
Dependencies

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

Extraction
Rules

Grammatical Dependencies

80

The system operator shall initialize the simulator configuration.

nsubj dobj

Operator Configurationinitalize

Lift Dependencies to Semantic Units

81

The system operator shall initialize the simulator configuration.

nsubj dobj

Operator Configurationinitalize

System
Operator

Simulator
Configuration

initalize

nsubj dobj

Approach

82

Process
Requirements

Statements

Lift
Dependencies to
Semantic Units

Construct
Domain Model

NL
Requirements

Phrasal
Structure

Dependencies Phrase-level
Dependencies

Class A

Class B

Class C

Class D

1 *

Relation

Domain
Model

Extraction
Rules

Link Paths

83

The simulator shall send log messages to the
database via the monitoring interface.

Simulator Log Messagesend

Simulator Databasesend log message
to

Simulator Monitoring
Interface

send log message
to database via

How useful is our approach?

50 Requirements
213 Relations

• Interview survey with
experts

• Correctness and Relevance
of each relation

• Missing relations in each
requirement

83

Correctness- 90% (avg.)

Results

Relevance- 36% (avg.)

Missed Relations- 8%

84

86

Requirements-Driven Testing

Context
• Context: Automotive, sensor systems

• Traceability between system requirements and test cases

• Mandatory when software must comply with ISO 26262

• Customers also require such compliance

• Use-case-centric development TC4

TC3

TC2

Requirements Test cases

TC1

87

Objectives
• Automatically generate test cases from requirements

• Capture and create traceability information between test
cases and requirements

• Requirements are captured through use cases

• Use cases are used to communicate with customers and the
system test team

• Complete and precise behavioral models are not an option:
too difficult and expensive (Model-based testing)

88

Strategy

• Analyzable use case specifications

• Automatically extract test model from the use case
specifications (Natural Language Processing)

• Minimize modeling, domain modeling only

• No behavioral modeling

89

Errors.size()== 0
Status != null

t > 0 && t < 50

Constraints

Domain Model Test Cases

Test Scenarios

90

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SENDUse Cases

Evaluate
Consistency

UMTG

RUCM
Use Case Name: Identify Occupancy Status
Actors: AirbagControlUnit
Precondition: The system has been initialized
. . .

Basic Flow
1. The seat SENDS occupancy status TO the system.
2. INCLUDE USE CASE Classify occupancy status.
3. The system VALIDATES THAT the occupant class for airbag control is valid.
4. The system SENDS the occupant class for airbag control TO AirbagControlUnit.

Specific Alternative Flow
RFS 3
1. IF the occupant class for airbag control is not valid THEN
2. The system SENDS the previous occupant class for airbag control TO …

Postcondition: The occupant class for airbag control has been sent.

Postcondition: The previous occupant class for airbag control has been sent.

[Yue et al. TOSEM’13]

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS

THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS

THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS

THE ACTOR SEND

ERRORS ARE ABSENT

TEMPERATURE IS LOW

STATUS IS VALID

Identify Constraints
4

Constraint descriptions
Errors.size() == 0
Status != null

t > 0 && t < 50

Generate
Scenarios and

Inputs

6

Elicit Use Cases
1

Missing Entities

Specify Constraints
5

OCL constraints

Model the Domain
2

Evaluate
Consistency

3 Domain ModelRUCM
Use Cases

Generate
Test Cases

7

Test Cases
Object

Diagrams
Test

Scenarios Mapping Table

Elicit Use Cases
1

Model the Domain
2

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SEND

THE ACTOR SEND
THE SYSTEM VALI
THE SYSTEM DIS
THE ACTOR SENDRUCM

Use Cases

Generate
Scenarios and

Inputs

6

ERRORSARE ABSENT

TEMPERATUREIS LOW

STATUS ISVALID

Identify Constraints
4

Constraint descriptions

Evaluate
Consistency

3
Domain Model

Based on Natural
Language Processing

93

94

Basic Flow

1. The seat SENDS occupancy status TO the system.

2. INCLUDE USE CASE Classify occupancy status.

3. The system VALIDATES THAT

the occupant class for airbag control is valid and

the occupant class for seat belt reminder is valid.

4. The system SENDS the occupant class for airbag control TO
AirbagControlUnit.

5. The system SENDS the occupant class for seat belt reminder TO
SeatBeltControlUnit.

6. The System Waits for next execution cycle.

Postcondition: The occupant class for airbag control and the
occupant class for seat belt reminder have been sent.

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

OUTPUT STEP

OUTPUT STEP

INTERNAL STEP

POSTCONDITION

DOMAIN ENTITY

CONSTRAINT

CONSTRAINT

DOMAIN ENTITY

DOMAIN ENTITY

Evaluate Model Consistency

95

Occupant Class for Airbag Control

Occupant Class for Seat Belt Reminder

Domain Entities

AirbagControl

System

Sensor

OccupantStatus

- OccupantClassForAirbagControl
- OccupantClassForSeatBeltReminder

Airbag Control Classification Filter Sensor

ClassificationFilter

Tagged Use Case

1
1

1
1

1
1

1

1..*

1 1

96

https://sites.google.com/site/umtgTestGen/

Toolset integrated with IBM
DOORS and Rhapsody

Case Study
• BodySense, embedded system for detecting occupancy

status in a car

• Evaluation:

• Cost of additional modelling

• Effectiveness in terms of covered scenarios
compared to current practice at IEE

• Keep in mind changes and repeated testing
97

Costs of Additional Modeling

98

Use Case Steps Use Case
Flows

OCL
Constraints

UC1 50 8 9
UC2 44 13 7
UC3 35 8 8
UC4 59 11 12
UC5 30 8 5
UC6 25 6 12

5 to 10 minutes to write each constraints
=> A maximum of 10 hours in total

Effectiveness: scenarios covered

99

0

5

10

15

20

25

30

35

40

UC1 UC2 UC3 UC4 UC5 UC6

Scenarios Covered By Engineer Scenarios Covered By UMTG

100%

100%

100%

100% 100%
100%

81%

77%
100%

86%

50% 67%

It is hard for engineers to capture
all the possible scenarios
involving error conditions.

Recently: Extension of the approach for testing
timeliness requirements based on use cases and

timed automata

100

101

Supporting Product Lines and
Requirements Configuration

in Use-Case Driven Development

.lu
software verification & validation
VVS
Incremental Reconfiguration of

Product Specific Use Case Models
for Evolving Configuration Decisions

Ines Hajri
joint work with Arda Goknil, Lionel Briand, Thierry Stephany

28 February 2017

SnT Center, University of Luxembourg
IEE, Luxembourg

Context

International Electronics
& Engineering (IEE)

IEE develops real-time embedded systems:
• Automotive safety sensing systems
• Automotive comfort & convenience systems,

e.g., Smart Trunk Opener

103

Smart Trunk Opener (STO)

STO Provides automatic and hands-free access to a vehicle’s
trunk (based on a keyless entry system)

104

IEE Requirements Engineering
Use Case Driven

Development

Use Case
Diagram

Use Case
Specifications

Domain
Model

105

Dealing with Multiple Customers

106

STO Requirements
from Customer A

(Use Case Diagram
and Specifications,
and Domain Model)

Customer A
for STO

modify modify

modify modify

STO Test Cases for
Customer A

evolves to

(clone-and-own)

STO Requirements
from Customer B

(Use Case Diagram
and Specifications,
and Domain Model)

Customer B
for STO

evolves to

(clone-and-own)

STO Test Cases for
Customer B

evolves to

(clone-and-own)

STO Requirements
from Customer C

(Use Case Diagram
and Specifications,
and Domain Model)

Customer C
for STO

evolves to

(clone-and-own)

STO Test Cases for
Customer C

Product Line Approach

107

• A Product Line approach was clearly needed
• Restricted and analyzable use case specifications

(NLP)
• Variability modeling in use case diagrams and

specifications
• Automated configuration guidance for configuring

requirements with each customer
• Automated generation of product-specific use case

models based on decisions

Use Cases And
Domain Model

Customer A
for Product X

Product-Line
Use Cases And
Domain Model

Identify
Commonalities and

Variabilities
Configurator

Customer B
for Product X

Use Cases And
Domain Model

Customer C
for Product X

Use Cases And
Domain Model

configure
evolves

reconfigure

evolves

reconfigure

reconfigure

reconfigure

108

Product Line Use Case Diagram for
STO (Partial)

109

• RUCM is based on a (1) template, (2) restriction rules,
and (3) specific keywords constraining the use of
natural language in use case specifications

• RUCM reduces ambiguity and facilitates automated
analysis of use cases

Restricted Use Case Modeling:
RUCM

110

• Flow of events is described in restricted natural language

RUCM

Basic Flow

1. INCLUDE USE CASE Identify System Operating Status.
2. The system VALIDATES THAT the operating status is OK.
3. The system REQUESTS the move capacitance FROM the UpperSensor.
4. The system REQUESTS the move capacitance FROM the LowerSensor.
5. The system VALIDATES THAT the movement is a valid kick.
6. The system VALIDATES THAT the overuse protection feature is enabled.
7. The system VALIDATES THAT the Overuse protection status is inactive.
8. The system SENDS the valid kick status TO the STOController.
Post condition: The gesture has been recognised and the STO Controller has
been informed.

111

• Keyword: INCLUDE VARIATION POINT: ...
• Inclusion of variation points in basic or alternative flows of

use cases:
Use Case: Identify System Operating Status
Basic Flow
1. The system VALIDATES THAT the watchdog reset is valid.
2. The system VALIDATES THAT the RAM is valid.
3. The system VALIDATES THAT the sensors are valid.
4. The system VALIDATES THAT there is no error detected.
Specific Alternative Flow
RFS 4
1. INCLUDE VARIATION POINT: Storing Error Status.
2. ABORT.

Example Variability Extension

112

• Tool Support (PUMConf): https://sites.google.com/site/pumconf/

• Positive feedback from engineers, both about the modeling
approach and configuration tool

• They confirmed they benefited from:

• Understanding the commonalities and differences across
product requirements

• Automated guidance in a configuration that is often complex,
i.e., many (interdependent) decisions

Results

113

114

Discussion

Many Applications

115

• Requirements to support a shared understanding
among many stakeholders in large projects

• Requirements to support communication
between software engineers and domain experts

• Requirements as contract with customers
• Requirements to support compliance with

standards, e.g., traceability to tests
• Requirements to support quality assurance, e.g.,

testing
• Requirements to support change control

But automation is required to justify the cost
of rigorous requirements engineering and to

achieve its full potential

116

Varying Forms of Requirements

117

• Natural language statements, complying or
not with templates

• Use case specifications, possibly structured
and restricted

• (Formal) models, e.g., class and activity
diagrams

The best form of requirements depends on
context, but in most cases significant

information is captured in natural language

118

Contextual Factors

119

• Regulatory compliance, e.g., standards
• Project size, team distribution, and number of

stakeholders
• Background of stakeholders and communication

challenges
• Domain complexity
• Presence of product lines with multiple customers
• Importance of early contractual agreement
• Frequency and consequences of changes in

requirements

Choosing an adequate way to capture
requirements is essentially a trade-off between
RE cost & flexibility and precision & automation

120

Conclusions

121

• Many challenges related to Natural Language requirements:
(1) Ambiguity
(2) Domain knowledge extraction
(3) Change impact and management
(4) Requirements-driven testing

• NLP technology now provides many opportunities for
automation and lowering documentation overhead

• But more attention to NL requirements analysis is needed in
research

• We need much more (reported) industrial experience

Acknowledgements

122

• Mehrdad Sabetzadeh
• Chetan Arora
• Fabrizio Pastore
• Chunhui Wang
• Arda Goknil
• Ines Hajri
• Shiva Nejati

Analyzing Natural-Language Requirements:

The Not-too-sexy and Yet Curiously Difficult
Research that Industry Needs

Lionel Briand

REFSQ, Feb 28th, 2017

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

Natural Language Requirements
• [TSE 2017] C. Arora et al., Automated Extraction and Clustering of Requirements Glossary Terms

• [MODELS 2016] C. Arora et al., Extracting Domain Models from Natural-Language Requirements: Approach
and Industrial Evaluation

• [RE 2015] C. Arora et al., Change Impact Analysis for Natural Language Requirements: An NLP Approach

• [TSE 2015] C. Arora et al., Automated Checking of Conformance to Requirements Templates using Natural
Language Processing

Requirements-Driven Testing

• [ISSTA 2015] C. Wang et al., Automatic Generation of System Test Cases from Use Case Specifications

• [ICST 2017] C. Wang et al., System Testing of Timing Requirements based on Use Cases and Timed
Automata

124

Product Families and Configuration
• [MODELS 2015] I. Hajri et al., Applying Product Line Use Case Modeling in an Industrial

Automotive Embedded System: Lessons Learned and a Refined Approach

• [SoSYM 2016] I. Hajri et al., A Requirements Configuration Approach and Tool for Use Case-Driven
Development

Impact Analysis

• [FSE 2016] S. Nejati et al., Automated Change Impact Analysis between SysML Models of
Requirements and Design

• [RE 2015] C. Arora et al., Change Impact Analysis for Natural Language Requirements: An NLP
Approach

125

