
Pinpointing Ambiguity and Incompleteness in Requirements Engineering via Information Visualization and NLP

Fabiano Dalpiaz, Ivor van der Schalk, Garm Lucassen

Requirements Engineering Lab Utrecht University, the Netherlands March 22, 2018

I. Context and Motivation

1. Context and Motivation

Requirements defects are still present in practice

Ambiguity, vagueness, incompleteness, etc.

The system shall send a message to the receiver, and it provides an acknowledge message within some seconds

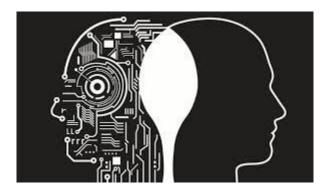
[Rosadini 2017] [Vogelsang 2016]

1. Context and Motivation

Requirements defects are still present in practice

> Ambiguity, vagueness, incompleteness, etc.

The system shall send a message to the receiver, and <u>it</u> provides an acknowledge message within <u>some</u> seconds


Referential pronoun ambiguity

Vague term

[Rosadini 2017] [Vogelsang 2016]

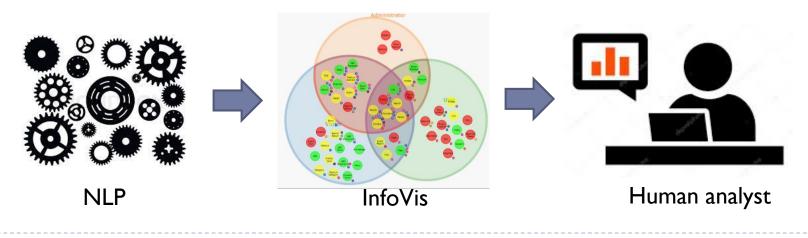
1. Context and Motivation

- Identifying requirements defects is still hard!
 - Natural language processing (NLP) tools do not deliver perfect accuracy in automated defect identification
 - Human analysts are effective, but how do they scale?

[Rosadini 2017] [Tjong 2013] [Vogelsang 2016]

2. Conceptual Solution

A picture is worth a thousand words. An interface is worth a thousand pictures.

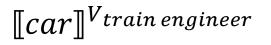

— Ben Shneiderman —

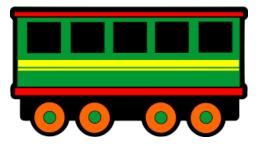
AZQUOTES

- 2. Conceptual solution
- Requirements artifact: user stories
 As a student,
 - I want to receive my grades via e-mail, so that I can quickly check them.

Highly popular in agile dev! [Lucassen 2016]

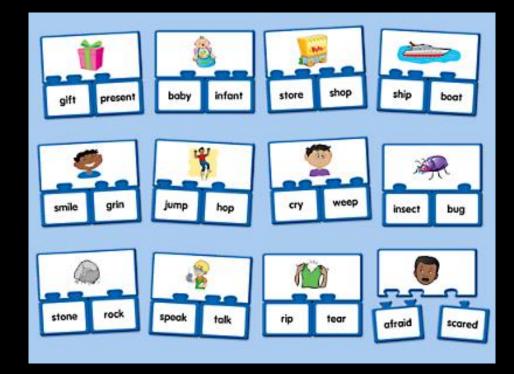
Idea: combine NLP with information visualization (InfoVis)
 → automation to help humans!


2. Conceptual solution


Different stakeholders have their own viewpoints

- We focus on differences in their terminology!
 - For example, do car and automobile have the same meaning?
 - $[t]^{V_1}$ is the denotation of term t according to viewpoint V_1

 $\llbracket car \rrbracket^{V_{Fabiano}}$



2. Conceptual solution

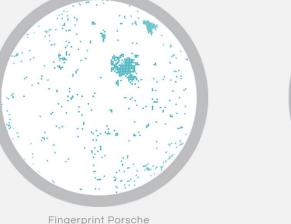
We identify possible defects depending on the denotations that the viewpoints associate with a term

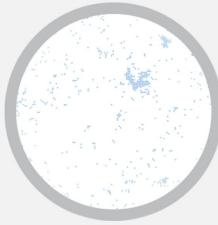
Relation [12]	Possible defect	Defect formalization	Example
Consensus	-	$\llbracket t_1 \rrbracket^{V_1} = \llbracket t_1 \rrbracket^{V_2}$	$\llbracket \text{bank} \rrbracket^{V_1} = \text{financial institution}$ $\llbracket \text{bank} \rrbracket^{V_2} = \text{financial institution}$
	(Near-)synonymy		$ \ \text{car} \ ^{V_1} = \text{road vehicle} $
Correspondence	(Near-)synonymy leading to ambiguity	$\llbracket t_1 \rrbracket^{-1} = \llbracket t_2 \rrbracket^{-2}$	$\llbracket automobile \rrbracket^{V_2} = road vehicle$
Conflict	Homonymy leading	$\llbracket t_1 \rrbracket^{V_1} \neq \llbracket t_1 \rrbracket^{V_2}$	$\llbracket \text{bank} \rrbracket^{V_1} = \text{financial institution}$
	to ambiguity		$\llbracket \text{bank} \rrbracket^{V_2} = \text{land alongside river}$
Contrast	Incompleteness		$\llbracket \text{bank} \rrbracket^{V_1} = \text{financial institution}$
			$\llbracket \operatorname{bank} \rrbracket^{V_2} = \bot$

3. (Near-)Synonymy Detection

10

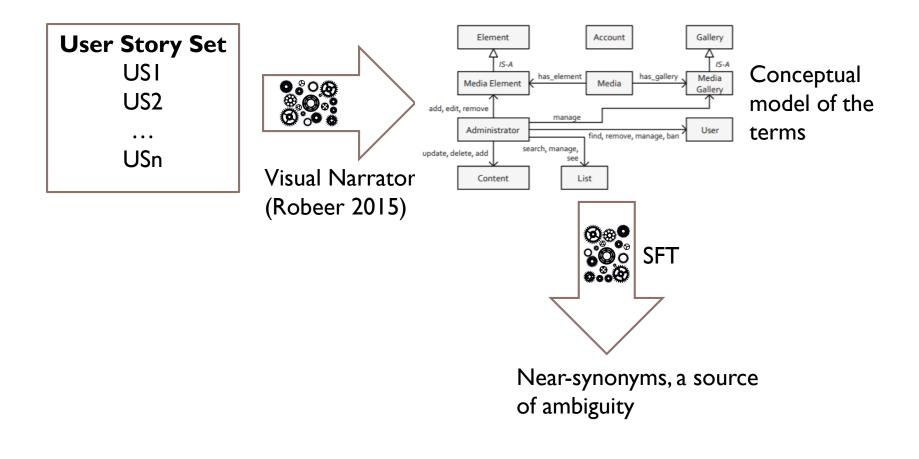
3. (Near-)Synonymy Detection


Goal: identifying possible inter-view ambiguity


	(Near-)synonymy leading to ambiguity	$\llbracket t_1 \rrbracket^{V_1} = \llbracket t_2 \rrbracket^{V_2}$	$\llbracket \operatorname{car} \rrbracket^{V_1} = \operatorname{road} \operatorname{vehicle}$ $\llbracket \operatorname{automobile} \rrbracket^{V_2} = \operatorname{road} \operatorname{vehicle}$
--	---	---	---

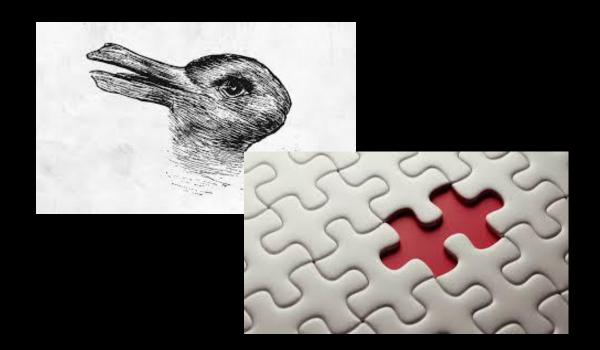
How? We use Semantic Folding Theory (SFT)

- Every term is associated a semantic fingerprint
- Such fingerprints are created by analyzing huge amounts of text
- Similar fingerprints indicate similar terms



Fingerprint Jaguar

- 3. (Near-)Synonymy Detection
- How do we apply SFT to requirements engineering?

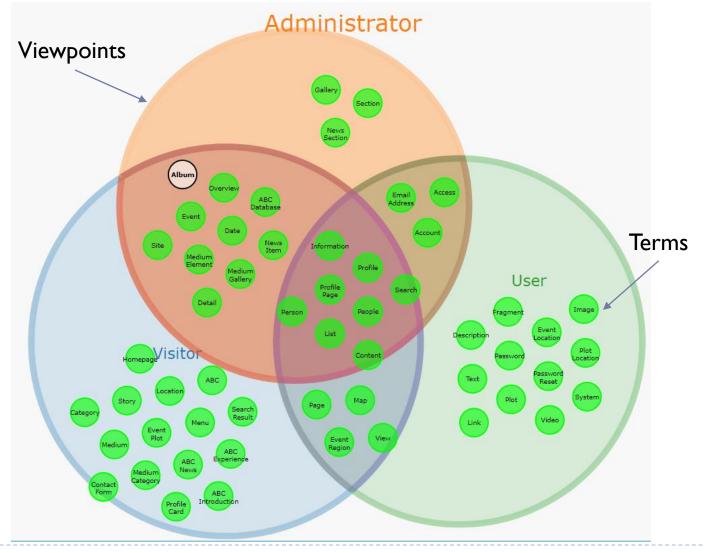


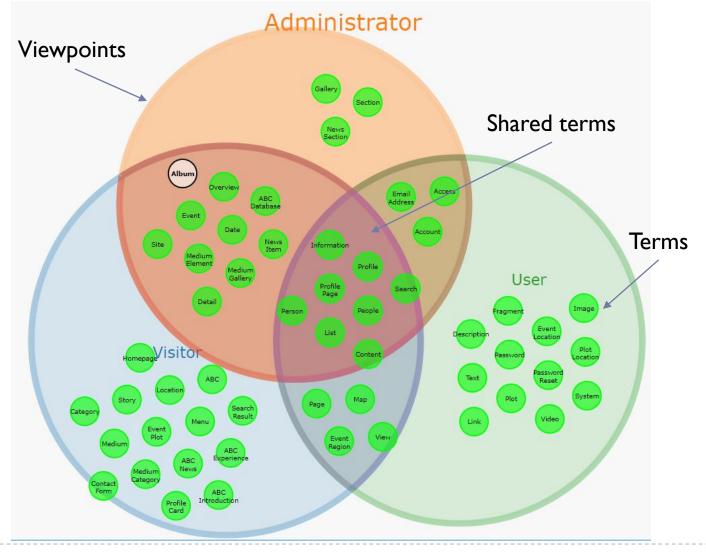
3. (Near-)Synonymy Detection

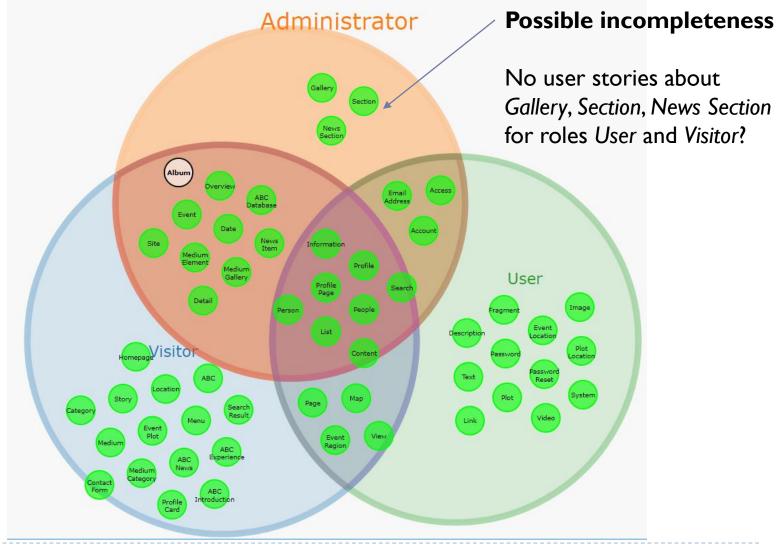
(Near-)synonymity between two terms t₁ and t₂

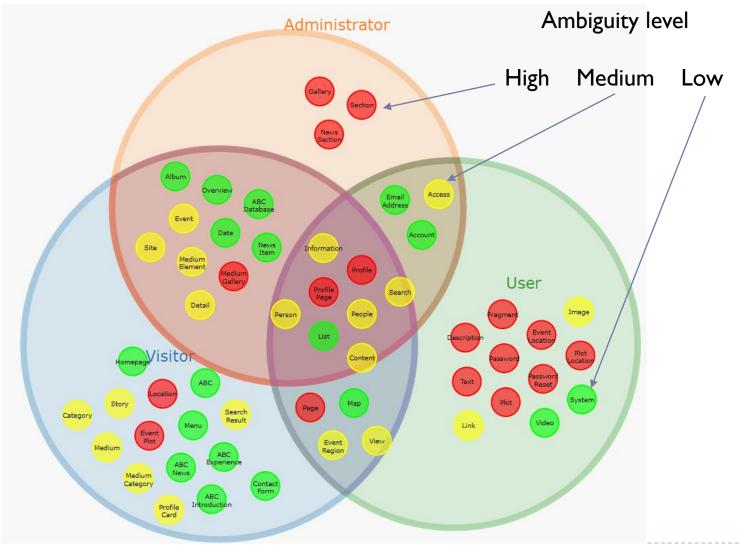
$$ambig_{t1,t2} = \frac{2 \cdot sim_{t1,t2} + sim_{t1,t2}}{3}$$

- A combination of term similarity and context similarity
- > 2/3 term similarity (car-automobile, etc.)
- I/3 context similarity: user stories where the terms appear
 - As a user, I want to make a bid for a car, so that ...
 - As a visitor, I want to see the automobiles on the market, so that...
- Weights assessed via a correlation study with humans

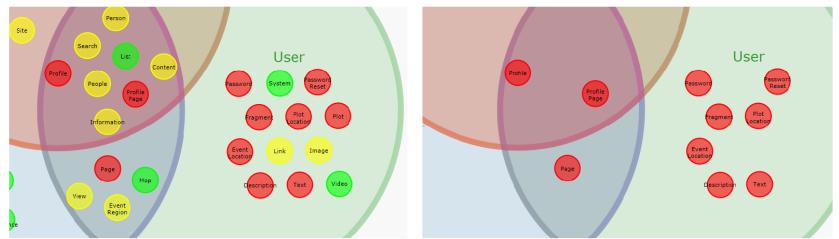


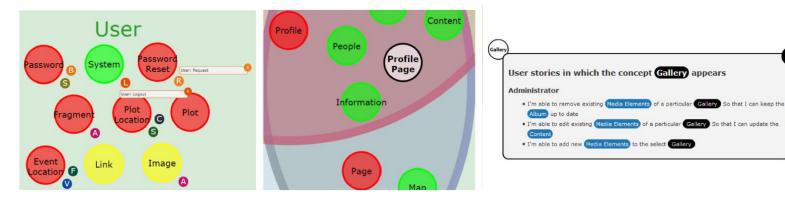

- NLP cannot (yet?) replace humans!
- Use InfoVis using Schneiderman's mantra


Overview first, zoom and filter, then details-on-demand


Focus mostly on ambiguity and incompleteness

(Near-)synonymy leading to ambiguity	$\llbracket t_1 \rrbracket^{V_1} = \llbracket t_2 \rrbracket^{V_2}$	$\llbracket \operatorname{car} \rrbracket^{V_1} = \operatorname{road} \operatorname{vehicle}$ $\llbracket \operatorname{automobile} \rrbracket^{V_2} = \operatorname{road} \operatorname{vehicle}$
Incompleteness	$\llbracket t_1 \rrbracket^{V_1} \neq \bot \land \llbracket t_1 \rrbracket^{V_2} = \bot$	$\llbracket \text{bank} \rrbracket^{V_1} = \text{financial institution} \\ \llbracket \text{bank} \rrbracket^{V_2} = \bot$




@2018 Fabiano Dalpiaz

Filter

Zooming

20

5. Quasi-Experiment

- 5. Quasi-Experiment
- Hypothesis: analysts who use our approach obtain a significantly higher...
 - precision in finding ambiguities (HI);
 - recall in finding ambiguities (H2);
 - precision in finding missing requirements (H3);
 - recall in finding missing requirements (H4);
- ...compared to analysts using a pen-and-paper inspection.

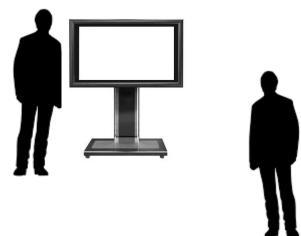
5. Quasi-Experiment

- Study purpose/object: compare the relative effectiveness of
 - Our approach (REVV tool) supported by an 84" touch screen
 - A manual, pen-and-paper inspection of the requirements
- With voluntary MSc students in information science (n=8)
- 2 groups of 2 students with REVV
- 2 groups of 2 students pen&paper

- 5. Quasi-Experiment
- Constructs were defined through brainstorming among the authors, a pilot test, and the existing literature
- A missing user story is one whose absence inhibits the realization of at least another user story
- An ambiguity occurs when two user stories contain distinct terms that shares the same denotations

5. Quasi-Experiment

Quantitative results

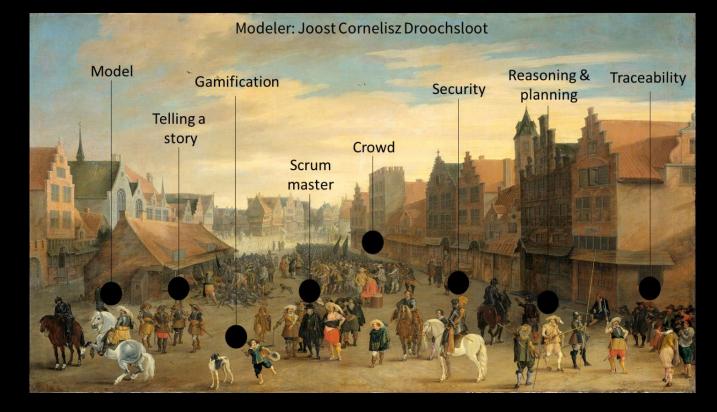

- Reject HI and H3 (precision)
- Retain H2 and H4 (recall)

	Total TP	#TP	#FP	Precision	Recall			
Session $1 - $ ambiguity								
Pen & paper	28	8	1	0.888	0.285			
Tool		23	4	0.851	0.821			
Session $2 - $ ambiguity								
Pen & paper	12	3	4	0.428	0.25			
Tool		9	0	1	0.75			
Session $1 - \text{incompleteness}$								
Pen & paper	9	4	1	0.8	0.444			
Tool		5	2	0.714	0.555			
Session 2 – incompleteness								
Pen & paper	5	2	2	0.5	0.4			
Tool		3	2	0.6	0.6			

- 5. Quasi-Experiment
- Qualitative findings
 - Different types of interaction with the screen

- Tool usability should be improved
- The tool can lead to time savings

6. Discussion and Outlook


27

6. Discussion and outlook

- A first attempt to combine NLP and InfoVis
- Focus on ambiguity (near-synonymity) and missing reqs
- Inspiration by Venn diagrams
- Future directions
 - Algorithm can be further tuned (risk of overfitting?)
 - Evaluation, evaluation, evaluation!
 - Using domain ontologies for better results?

Thanks from the **Requirements** Engineering Lab at Utrecht University!

Fabiano Dalpiaz Sjaak Brinkkemper Marcela Ruiz F. Basak Aydemir Sietse Overbeek Gerard Wagenaar Davide Dell'Anna Govert-Jan Slob

