
3/23/2018

1

Requirements for self-driving guidance software:

A discussion of alternatives

Moderator

David Gelperin, CTO

ClearSpecs Enterprises

Goals for the discussion

• To identify major hazards for requirements quality

in the current competitive approach

• To explore safer strategies and tactics

• To identify tactics for raising awareness

of the need for safer approaches

among manufactures and others

3/23/2018

2

Proposed Agenda

1. Moderator task description – promote participation

• Share knowledge, experience, & opinions you brought

• Share reactions to what I brought

• Share your thoughts and those of colleagues afterwards at david@clearspecs.com

2. Quick attendee intros: Name, Organization, Responsibilities and Interests

3. Agenda modifications

4. Position statements (3-5 minutes) on current approach to autonomous software

5. Discuss (and record) hazards in and mitigations for current approaches

6. Discuss (and record) safer approaches and recommendations

7. Identify (and record) areas of disagreement

8. Discuss (and record) tactics for raising awareness in various communities

Why I’m Here – 1 of 2

3/23/2018

3

Dave’s Goal

To share ideas that raise your awareness

of extremely dangerous requirements practices

for potentially pervasive safety-critical software

I hope that each of you will spread these ideas

until they influence the developers of this software

Autonomous vehicles may have significant benefits

• May save many lives

• Many increase freedom of movement for physically challenged

• .

Are an admirable objective

3/23/2018

4

Innocents will die

Group 0 – Wrong place, wrong time

Group 1 – System defects

Group 1a – Best efforts, but human error

Group 1b – Not best efforts e.g., poor reqts

Current situation will significantly increase Group 1b due to

deeply flawed development strategies for extremely complex software

Competitive and unmonitored development strategies will kill

many more than necessary

Competitive requirements
are a very bad idea

Competitive artifacts will be seriously flawed

Glossaries

Hazard analysis results

Quality attributes e.g., safety, security, …

Function sets

particularly hazard mitigation functions

e.g., all behavior must be monitored

Design constraints

e.g., no single points of failure

Implementation constraints

e.g., must have and monitor coding standards

for clear and safe software

I assume safe software entails excellent requirements

3/23/2018

5

Hazards and Mitigations

Review candidate hazards and mitigations

for requirements quality and public safety

Modify and add others

e.g., No experts in the safety of AI applications

e.g., Worst will be first i.e., max defects, no support

Purpose:

 To identify current, but unnecessary, hazards to self-driving guidance
 (SDG) software and suggest mitigations.

Scope:

 Safety of the guidance software.

 Neither the sensor processing software nor the effector control software is

 included in this initiative.

Candidate hazards for requirements quality and public safety:

1. SDG software will be at least an order of magnitude more complex than any embedded
automotive software in production use today.

2. As is well known to [some] software engineers (but not to the general public), by far the
largest class of problems arises from errors made in the eliciting, recording, and
analysis of requirements. [2007 National Research Council report on Software for
Dependable Systems, page 40]

3. Most US software engineers have never taken a requirements course. Only four of the
“top 25” software engineering colleges in the US teach such a course. It is likely that
most embedded software developers, some of whom are EEs and system engineers,
have never taken a requirements course either.

4. Most software engineers, system engineers, and embedded software developers do not
understand the nature of software quality requirements i.e., requirements for safety,
security, reliability, and understandability. They do not know how to specify, achieve,
nor verify them.

5. In the US, regulators of autonomous vehicles (AVs) know less about software
requirements than software developers.

6. There are more than 40 companies worldwide “racing” to create components and
vehicle guidance software with a poor understanding of software requirements in
general and software quality requirements in particular.

7. While the potential benefits of AVs are very desirable (i.e., the ends), risks in the current
competitive development approach (i.e., the means) are significant and unnecessary.

8. When manual tasks are automated by a team, a detailed glossary is essential.
Otherwise, something worse than a “tower of babel” is created within the team. The
same words will have many different meanings. For example, the meaning of “erratic
driving of the preceding vehicle” must be defined in detail along with actions to take
when detected.

9. Having more than one (1) glossary, (2) set of hazard analysis results, and (3) set of
basic SDG requirements is dangerous.

10. Competitive requirements suggest unsafe cultures.
11. An industry-supported edge-case simulator for software verification will also increase

safety.

12. People will die needlessly, especially early adopters, without industry-consensus work-
products because significant confusion will be added to the significant complexity of this
task.

13. The volume of early deaths may endanger acceptance of the technology and thus its
benefits would be lost or delayed due to risky development tactics.

Candidate mitigations:

1. Encourage industry to cooperate in the development of industry-consensus, "open-
source", requirements information including a glossary, hazard analysis, and
specification of basic SDG requirements.

2. Develop a standard on "meta-requirements for critical software requirements".
3. Encourage regulators to require compliance with the meta-requirements standard.
4. Encourage quality-aware development.
5. Encourage specification of quality attribute requirements using a tailored 3D quality

model.
6. Encourage staffing of a Quality and Productivity function (part 3 of Quality Goals

chapter).
7. Encourage development and use of an industry-supported edge-case simulator for SDG

software verification.

 Note: Details of mitigations 4-6 can be found at www.quality-aware.com

http://www.quality-aware.com/

3/23/2018

1

More Potential Mitigations

Open requirements artifacts

Intentionally imprecise requirements

Meta-requirements and monitoring

(SEI) software architecture evaluation methods

(CISQ/OMG) code quality standards and monitoring

(Misra) coding standards and monitoring

What is “erratic driving”?

3/23/2018

2

Is this creature “near the roadway”?

Glossaries are critical

For new domains or applications,

terminology management is very important

Tower of Babel Tower of

Unrecognized Ambiguity

3/23/2018

3

System Hazards

Review system hazards

and glossary definitions

Modify and add others

Developing requirement artifacts from identified hazards

Identify:

 potential system hazards that must be detected and responded to

 glossary definitions for hazard or response terminology e.g. driving erratically

Various forms of hazard analysis might identify:

 System failures

 all/some sensors fail

 classifier fails e.g., misclassifies

 effector logic fails

 cpu with guidance software dies

 GPS signal lost

 software fails e.g., causes unanticipated acceleration (UA) or erratic behavior

 software enables hacking

 software fails to adapt to new environments e.g. passage from England to France or entry into

school zone

 Vehicle conditions

 motor dies

 tires go flat

 brakes fail

 battery fails

 vehicle catches fire

 top is sheared off

 vehicle skids (e.g., on ice)

 vehicle is submerged

 Roadway conditions

 weather conditions

 different zones e.g., school, hospital, or work

 large, heavy, stationary object (e.g., firetruck) blocking the roadway or lane

 roadway collapses (e.g. bridge or sink hole)

 kangaroo on or near roadway

 traffic light outages

 stale yellow light

 Traffic conditions

 wrong way driver

 car ahead/beside drives erratically

 car behind tailgates

Such hazard lists can be used to guide requirements development or check the completeness of existing

requirements. To guide requirements development, each hazard including some system failures, can be

put into the following template and then factored into specific situations.

 If <hazard>, then the system must safely respond.

For example:

 If the “motor dies” and the vehicle is stopped, then …

 If the “motor dies” and the vehicle is moving and safe stopping is feasible, then …

 If the “motor dies” and the vehicle is moving and safe stopping in not feasible, then …

3/23/2018

1

Intentionally Imprecise Specs

Intentionally imprecise requirement specifications state complete, necessary,

possibly achievable, and subjectively verifiable restrictions on an implementation.

Subjective verification entails agreement by a “sufficient majority” of the stakeholders,

where the composition of the “sufficient majority” is precisely defined.

For example:

Any autonomous vehicle approved for use outside Australian cities

must “recognize kangaroos” on or near the roadway and take proper action.

Another example of Intentional Imprecision

Develop an elevator control system for tall buildings.

When fire is detected, the control system must

help to safely evacuate as many people as possible.

It must also enable responders to safely reach the fire

and endangered locations as quickly as possible.

3/23/2018

2

Building imprecise requirements from hazards

If the motor dies on a roadway and the vehicle is moving

and a safe and traversable glide path is available,

then turn on the hazard lights, signal appropriately, steer onto the glide path,

decrease speed as needed, and brake when stopping is safe.

What’s an autonomous vehicle to do?

3/23/2018

3

Meta-requirements

Review draft specification and suggest modifications

Meta-requirements for critical software requirements

A straw-draft specification

Definitions:

1. A mission statement specifies the goals of a mission.

2. High-risk missions may result in significant financial loss and/or serious injury or death.

3. Critical software supports the goals of high-risk missions.

4. The general public are those not directly involved in a mission.

5. HRGP missions are those whose failures are likely to endanger the general public e.g., self-

driving vehicles.

6. A quality goal is a quality attribute requirement e.g., a security requirement.

7. Basic qualities (as described in the LiteRM quality model – www.quality-aware.com/daves-q-a-

stuff.php) are internal qualities including understandability, verifiability, and compliance.

8. We consider the following types of software requirements:

Types and subtypes
of software requirements

Primary
Sources

Understanding
Risk

Functions

 Domain functions

 interactive

 happy paths Customers Medium

 unhappy paths Developers Medium

 autonomous Developers Low

 System functions e.g., backup Developers Low

 Quality support functions

 external quality supports e.g., exception handlers Developers Medium

 mixed quality supports e.g., encrypting routines Developers High

Quality goals (i.e., quality attribute requirements)1

 Internal qualities e.g., coding standards compliance Quality Management Low

 External qualities e.g., reliability Customers & Developers Medium

 Mixed qualities e.g., security Customers & Developers High

Constraints

 Technical

 design e.g., no single point of failure Developers Medium

 implementation e.g., coding standards Quality Management Low

 verification e.g., test coverage Quality Management Low

 deployment e.g., secure packaging Developers Low

 Societal e.g., regulations Quality Management Low

 Project e.g., deadlines Project Management Low

Supplier attributes Quality Management Low

9. Each requirement has a set of common properties such as an identifier, type, primary sources,

state, and priority.

10. Technical inspections are skeptical if inspectors assume the work is defective and diligently

search for the defects.

1 Details about quality goals can be found in Chapter 3 of Understanding Requirements and in the LiteRM 3D
quality model. Both are freely available at www.quality-aware.com/daves-q-a-stuff.php.

http://www.quality-aware.com/daves-q-a-stuff.php
http://www.quality-aware.com/daves-q-a-stuff.php
http://www.quality-aware.com/daves-q-a-stuff.php

11. Meta-requirements are restrictions on a requirement or set of requirements.

12.

Assumptions:

1. We don’t fully understand the complex software we are building.

2. Effective development of complex software requires humility and an emphasis on

understandability.

3. When software endangers the general public, our loved ones deserve our best efforts.

4. “As is well known to [some] software engineers (but not to the general public), by far the largest
class of problems arises from errors made in the eliciting, recording, and analysis of
requirements.”2

5. Quality goals are poorly understood by developers.

6. Legacy norms (i.e., that’s the way we have always done it) can be dangerous when dealing with

significantly increased complexity.

7. The rationale for each meta-requirement is to maximize understanding and/or minimize defects

in software requirements.

8. The rationale for the set of meta-requirements is to prevent unnecessary harm.

9.

Meta-requirements:

1. Software requirements must be organized by types and subtypes.

2. Each requirement must have:

a. an identifier showing its type or subtype

b. properties identifying priority, status, sources, and associated requirements

c.

3. Functional requirements must be specified by rules specifying trigger conditions and associated

actions.

4. Trigger conditions must be skeptically inspected to assure that each condition is neither too

broad nor too narrow and is effective in capturing intent. Each action must be skeptically

inspected to assure that it is safe and effective when its trigger conditions exist.

5. Trigger conditions for a set of functional requirements must be analyzed and skeptically

inspected for correctness, feasibility, completeness, consistency, and necessity.

6. All basic qualities must be required (and aggressively verified).

7. The production and logging of assurance evidence during operation (e.g., by self-checking) must

be required.

2 Daniel Jackson, Martyn Thomas, and Lynette I. Millett, Editors
Software for Dependable Systems: Sufficient Evidence?

National Research Council 2007 [page 40]

8. The properties of a quality goal must specify its

a. definition

b. required level of achievement

c. measurement strategy

d. hazards

e. mitigations

f. achievement strategy

g. verification strategy

h. relationships to quality functions and other quality goals

i.

9. The set of requirements must have:

a. A requirements glossary or ontology to precisely define conditions, actions, states, and

any other words, phrases, acronyms, and abbreviations used in requirements

statements. Actions must be defined by constant, pre, and post conditions. The glossary

entries must be complete and consistent. The glossary must be configuration managed

and readily accessible to any stakeholder.

b. A set of user type specifications, if the software is interactive

c. A set of domain object specifications

d. A set of domain facts and assumptions

e. A set of facts about values, conditions, and relationships

f. A set of associated regulations

g.

10. Each requirement must be discrete, understandable, unambiguous, valid, necessary, complete,

concise, conformant, feasible, and verifiable.

11. The set of requirements must be task-adequate, concise, consistent with each other, prioritized,

and achievable.

12. The requirements and their associated information must be skeptically inspected.

13. The set of requirements and their associated information for critical software supporting HRGP

missions must be made freely available to the general public no later than the start of software

design based on these requirements.

14.

3/23/2018

1

Unintended Acceleration Again

BMW spokesperson called the scenario "implausible“

"All BMW vehicles, .., employ an electronic accelerator pedal which uses software logic
to override the accelerator whenever the brake pedal is pressed while driving.
This fail-safe software means that if the vehicle detects that both pedals are depressed,
the on-board electronics will reduce engine power so that the driver may stop safely.

No vehicle behavior monitoring requirement

'My gas pedal is stuck' BMW driver tells 911

as he barrels down interstate at nearly 100 mph
Feb 14, 2018

Unintended Acceleration (UA)

Reports of UA
• Toyota

• BMW

• Audi

• Ford

3/23/2018

2

Vehicle Controller

Driving
Supervisor

Driving Supervisor and Vehicle Controller both include
emergency parker, emergency stopper and logger

(no single point of software failure)

Sensors
Actuators

(for lights, brakes, gears,
accelerator, environment)

Software architecture for vehicle guidance

14

o manufacturers

o regulators

o liability insurers

o public interest groups

o press

o RE community

o software safety community

o software quality community

o lawyers

o others?

Raising Awareness – Directly & Indirectly

If you’re NOT part of the solution, ...

3/23/2018

3

Final Thought

Hope is not a tactic

Steve Jablonsky,

Deepwater Horizon

