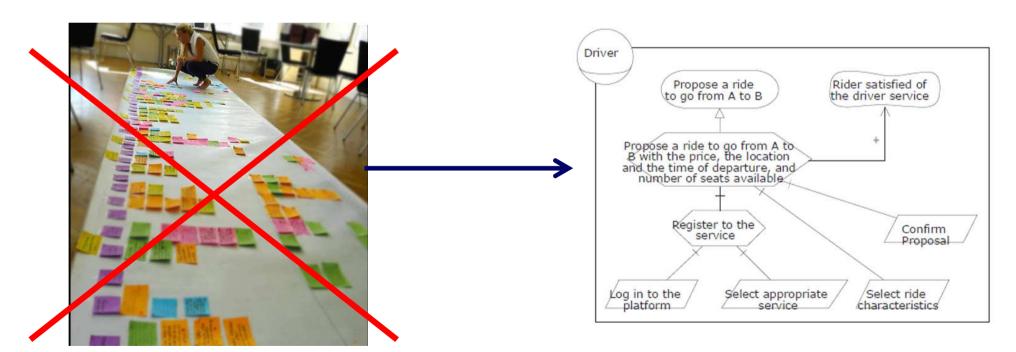


Samedi Heng, samedi.heng@uclouvain.be Université catholique de Louvain, Belgium.

As a new presenter at the REFSQ, **I want** to have a guideline for the presentation format, **so that** I can manage the contents and time to meet the quality of the conference.

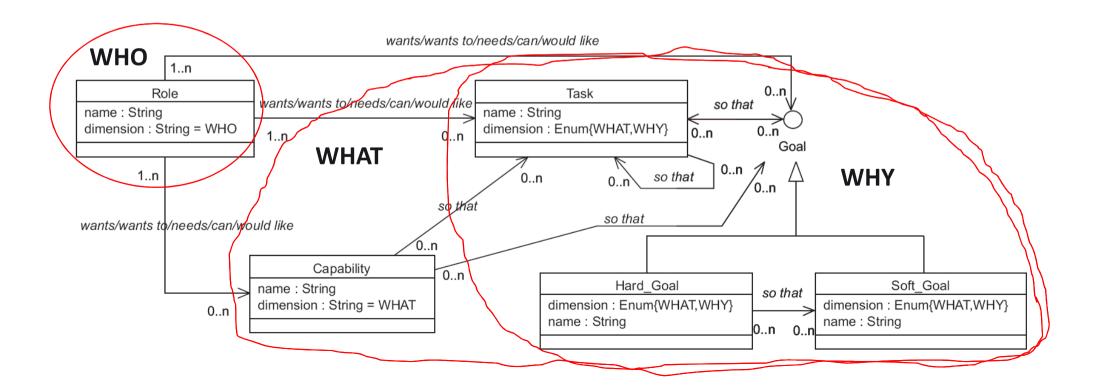

As a participant at the REFSQ, **I want** to get updated about the program, **so that** I can better plan my participation.

User Story


https://www.thoughtworks.com/insights/blog/how-user-centered-design-can-put-user-stories-proper-context

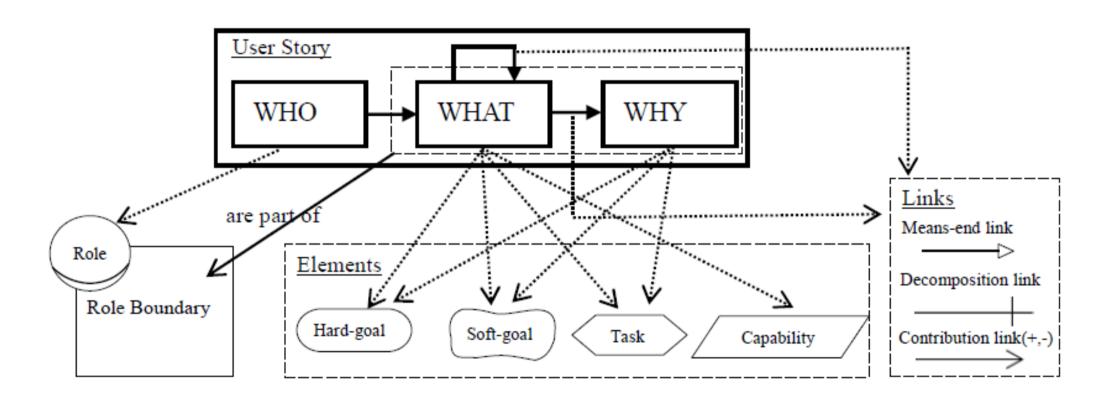
- Proposed by Kent Beck in eXtreme Programming (XP).
- 3Cs: Card, Conversation, and Confirmation.
- A text of maximum of two lines written from point of view of end-users.
- The most used requirements artifacts in Agile Methods.

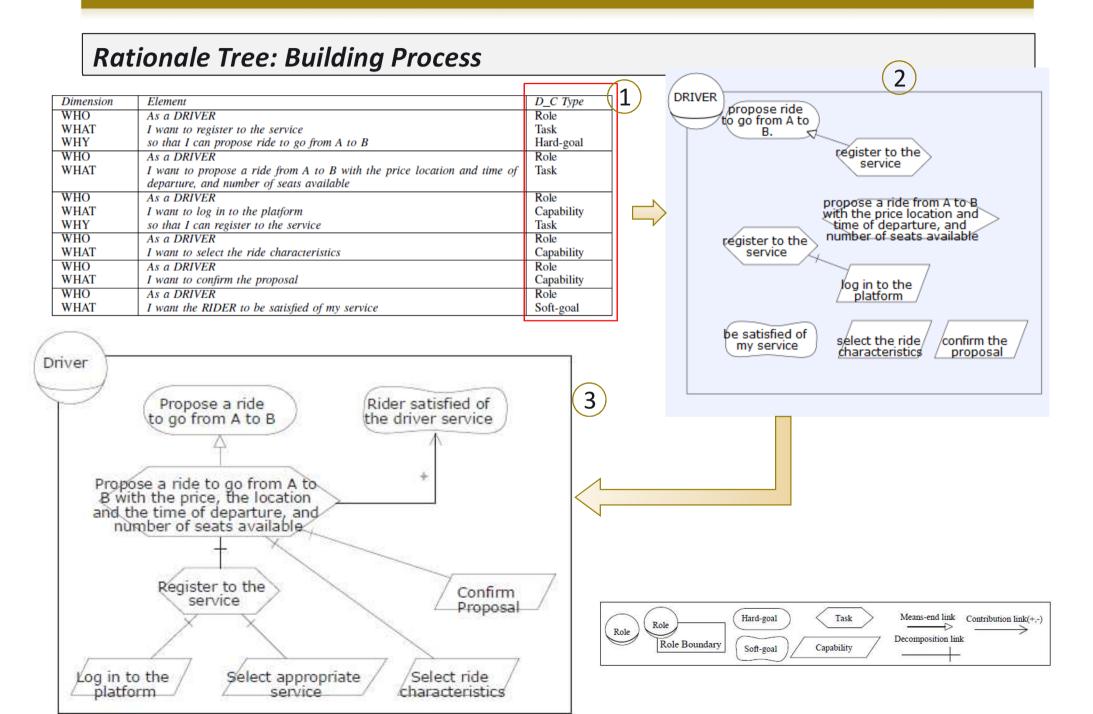
Rationale Tree: a Visual Representation of User Stories Set


Graphically model user stories set, so that we can visualize and analyze user stories (inter)dependencies.

Rationale Tree

Unified User Story Template: The meta-model


- User Stories are written by following a template:
 - But, too many templates have been proposed
 - And, lack of well-defined definition
- As [WHO], I want [WHAT], [so that [WHY]]



Unified User Story Template: Adopted semantics

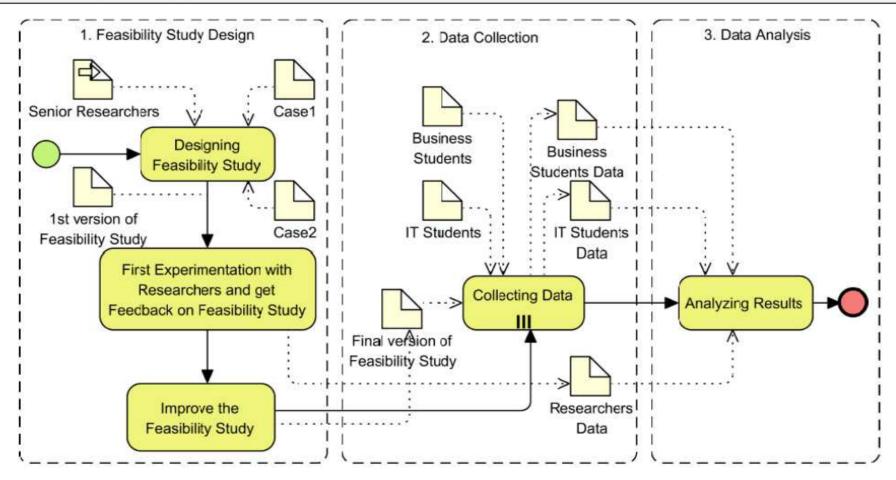
- A role is an abstract characterization of the behavior of a social actor within some specialized context or domain of endeavor.
- A hard-goal is a condition or state of affairs in the world that the stakeholders would like to achieve.
- A soft-goal is a condition or state of affairs in the world that the actor would like to achieve. But unlike a hard-goal, there are no clear-cut criteria for whether the condition is achieved, and it is up to the developer to judge whether a particular state of affairs in fact achieves sufficiently the stated soft-goal.
- A task species a particular way of attaining a goal.
- A capability represents the ability of an actor to define, choose, and execute a plan for the fulfillment of a goal, given certain world conditions and in the presence of a specific event.

Rationale Tree: i* framework graphical notation

Research Questions

RQ1: How easy a lambda modeler is able to build a consistent Rational Tree?

RQ2: What are the necessary conditions to provide a lambda modeler the ability to build a consistent Rationale Tree?



On Modelers Ability to Build a Visual Diagram from A User Story Set: A Goal-Oriented Approach

Yves Wautelet, Mattijs Velghe, Samedi Heng, Stphan Poelmans, and Manuel Kolp

Feasibility study process

- Two case studies: Carpooling and Book Factory
- Data collection: 21 Business Students, 35 IT Students, 13 Researchers

Assignment and Measured Variable of the Feasibility Study

- Background
- Theoretical understanding
- 5-step experimentation:
 - 1. Identification of all elements within the WHO dimension of the US;
 - Identification of all elements within the WHAT and WHY dimension of the US;
 - 3. Identification of the appropriate concept or tag for each element within the WHAT and WHY dimension of the US;
 - 4. Graphical representation (and linking) of the US' WHAT and WHY elements;
 - Identification and representation of other links between the US elements.
- Difficulty in performing each step

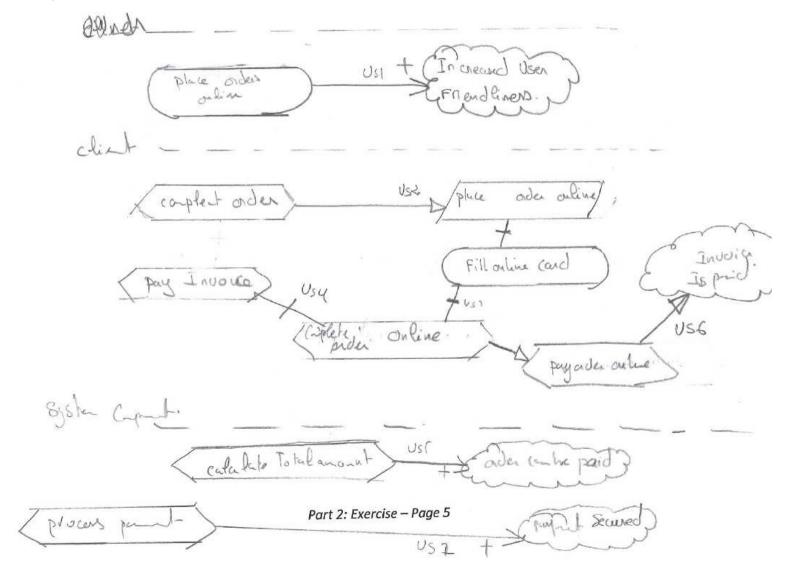
Assignment and Measured Variable of the Feasibility Study

Step 1

US 1	As an owner, I want my clients to be able to place orders online so that the customer-friendliness of our services increases.	
US 2	As a client, I have to complete an order so that I can place it online.	
US 3	As a client, I need to fill my 'online cart' with products.	
US 4	As a client, I need to pay my invoice, so that I can complete an online order.	
US 5	As system component, I need to calculate the total amount of the order, so that the invoice can be paid.	
US 6	As a client, I want to pay my order online, so that my invoice is paid.	
US 7	As a system component, I need to process payments on the Ogone-payment platform so that the payment is secured.	

<u>Step 1:</u> Identify all elements from the WHO-dimension (i.e. swimlanes in the model) from the different US.

Owner: Us A Chat: UsaNsa, Usa, Us 6. systempt: Us 5, Us 7


Assignment and Measured Variable of the Feasibility Study

Steps 2 and 3

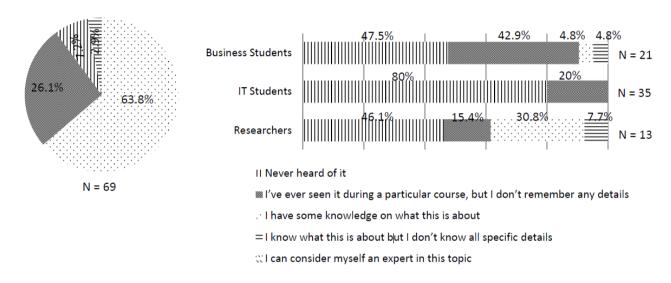
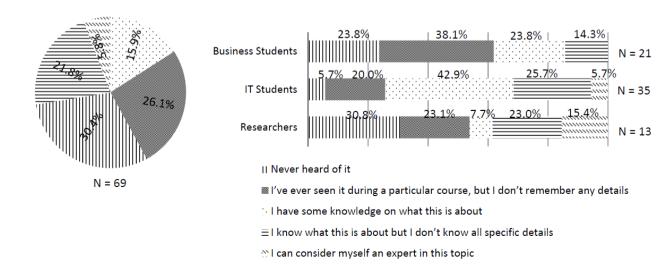
-		Step 2 (Element)	Step 3 (Modeling construct)
	WHAT	Place orders online	Hard_Goal
US 1	WHY	Increased user friendliness	Soft_Goal
	WHAT	complete ou order	Task
U\$ 2	WHY	Place office online	Capitality
uc a	WHAT	All online conduitizen chick	Hard-Good
U\$ 3	WHY	<u>—00000 - 1</u>	
	WHAT	Pay Invoice	1 Task
US 4	WHY	complete an ordina codes	touch.
US 5	WHAT	Cafelle Total amount	Task
	WHY	invoice can be faid	soft Goal 2
US 6	WHAT	payader online	Table
	WHY	invoice is paid	50 x2
US 7	WHAT	proces paynet on The . Ugore paynet planfas.	tark

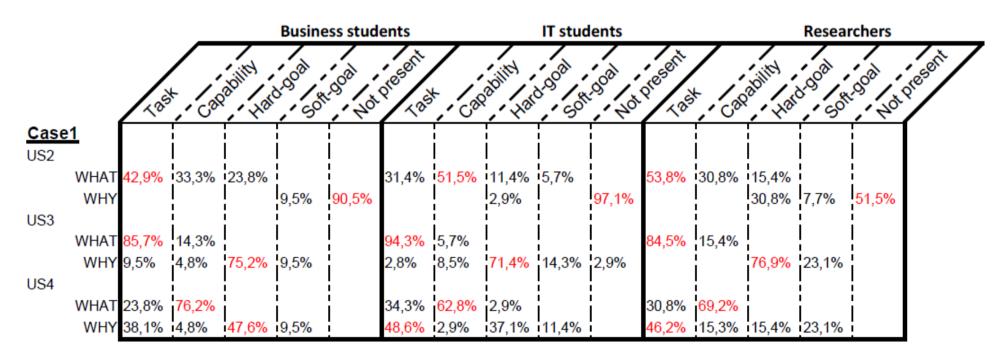
Assignment and Measured Variable of the Feasibility Study

Steps 4 and 5

Results: Participants' Background

Table 7.3 Expertise of participants with i* framework.


Table 7.4 Expertise of participants with user story.

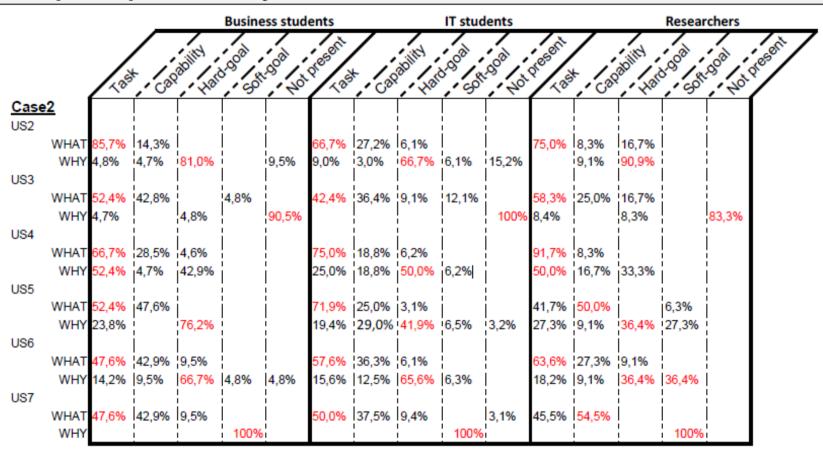
Feasibility study: Exercises

- As a presenter at the REFSQ,
 I want to know about the hotel information as soon as possible,
 so that I can book for my hotel.
- As a presenter at the REFSQ,
 I want to ask for research fund from my university,
 so that I can book for my trip.

Feasibility study: Results of Case 1

legend: Highest occurrence within the sample in question

Elements in the WHAT- and WHY-demension of the US in Case1:


US2 WHAT Propose a ride from A to B with the price, location and time of departure, and number of seats available

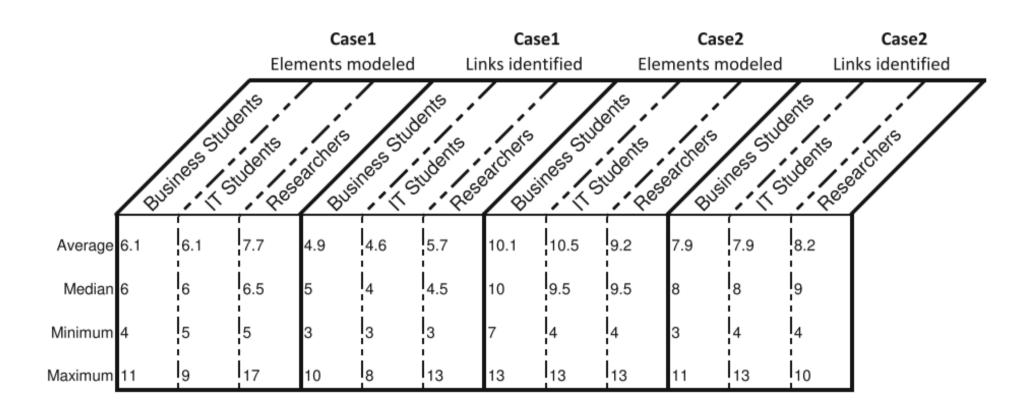
WHY -

US3 WHAT Book a ride US4 WHAT Login

WHY Get ride from A to B WHY Book a ride from A to B

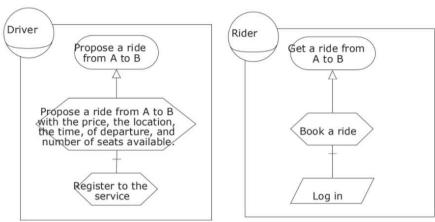
Feasibility study: Results of Case 2

legend: Highest occurrence within the sample in question

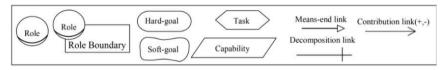

Elements in the WHAT- and WHY-demension of the US in Case2:

US2 WHAT	Complete an order	US5 WHAT	Calculate the total amount of the order
WHY	Place an order online	WHY	The invoice can be paid
US3 WHAT	Fill my 'online' cart with products	US6 WHAT	Pay my order online
WHY	-	WHY	The invoice is paid
US4 WHAT	Pay my invoice	US7 WHAT	Process payments on the Ogone-payment platform
WHY	Complete an online order	WHY	The payment is secured

Global performance of the model: Qualitative approach

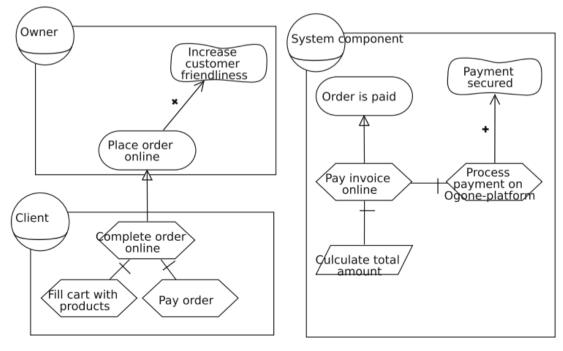

- Business Students: Rather Success
 - Model user stories separately
 - Fail in identifying elements in user stories set
 - Having knowledge in user story can produce a better model
 - Require more theoretical understanding
 - Process-Oriented
- IT Students: Fail in overviewing the 'global model'
 - Isolate elements without any link
 - No dependency
 - > Technical background influence their model
- Researchers: Produce a higher quality model
 - Model more elements
 - Decompose element in to sub-element
 - Try to identify and modeling new link out side the scope
- Modeling Errors
 - Decompose Capability in to Task
 - Links are not use properly (e.g., means-end)

Global performance of the model: Qualitative approach



Number of Elements and Links Models in Cases 1 and 2

Global performance of the model: Quantitative approach



Type solution for Case 2

Legend:

Type solution for Case 1

Global performance of the model: Quantitative approach

Evaluation criterion	Allocated scores	Maximum score	
		Case 1 (4 US)	Case 2 (7 US)
Completeness	1 point per modeled element	8 points	14 points
Consistency	0.5 points per consistently modeled element	4 points	7 points
Accuracy	4 points per correct link (only 1 point if the wrong type of link is used)	16 points	32 points
Global quality		10 points	20 points

Global Score = ((Case1/3.8) * 0.3 + (Case2/7.3)*0.7)

(a 10-based score)

(a) Descriptive statistics of the global score.

	Business Students	IT Students	Researchers
Average	6.20	5.50	6.60
Median	6.60	5.30	6.50
Minimum	2.90	3.60	4.40
Maximum	8.30	7.40	8.60

(b) Averages Scores on Case 1 and 2.

Sample	Case 1	Casa 2	
Groupe	Case I	Case 2	
Business			
Students	6.30	6.20	
IT Students	5.60	5.40	
Researchers	7.20	6.30	

Improvement for Building a consistent Rationale Tree with CASE Tool

- Rationale Tree Validity: Model checker;
- Completeness Aspect:
 - Provide the ability to add missing elements;
 - Provide a process view (Task \rightarrow sub-process and capability \rightarrow activities).
- Constraint Checking: use the clustering algorithms.

Conclusion

- There are discord in interpreting WHAT and WHY dimension:
 - Element can be interpreted in several ways;
 - Lack of understanding (e.g., task vs. capability).
- Participants were able to produce an acceptable model;
- Participants focused on process oriented;
- We are trying to apply our approach in large US set in professional IT context.

References

- Yves Wautelet, Samedi Heng, Manuel Kolp, Isabelle Mirbel:
 Unifying and Extending User Story Models. CAiSE 2014: 211-225.
- Yves Wautelet, Samedi Heng, Manuel Kolp, Isabelle Mirbel, Stephan Poelmans:
 Building a rationale diagram for evaluating user story sets. RCIS 2016: 1-12.
- Yves Wautelet, Samedi Heng, Diana Hintea, Manuel Kolp, Stephan Poelmans:
 Bridging User Story Sets with the Use Case Model. ER Workshops 2016.
- Yves Wautelet, Samedi Heng, Soreangsey Kiv, Manuel Kolp:
 User-story driven development of multi-agent systems: A process fragment for agile methods. Computer Languages, Systems & Structures 50: 159-176 (2017).